Continuous Adaptive Outlier Detection on Distributed Data Streams

نویسندگان

  • Liang Su
  • Weihong Han
  • Shuqiang Yang
  • Peng Zou
  • Yan Jia
چکیده

In many applications, stream data are too voluminous to be collected in a central fashion and often transmitted on a distributed network. In this paper, we focus on the outlier detection over distributed data streams in real time, firstly, we formalize the problem of outlier detection using the kernel density estimation technique. Then, we adopt the fading strategy to keep pace with the transient and evolving natures of stream data, and mico-cluster technique to conquer the data partition and “one-pass” scan. Furthermore, our extensive experiments with synthetic and real data show that the proposed algorithm is efficient and effective compared with existing outlier detection algorithms, and more suitable for data streams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Outlier Detection Technique for Data Streams

This work presents an adaptive outlier detection technique for data streams, called Automatic Outlier Detection for Data Streams (A-ODDS), which identifies outliers with respect to all the received data points (global context) as well as temporally close data points (local context) where local context are selected based on time and change of data distribution.

متن کامل

Entropy Based Adaptive Outlier Detection Technique for Data Streams

Outlier detection in data streams is an immensely enthralling problem in many application areas such as network intrusion detection, faulty sensor detection, fraud detection in online financial transactions etc. Majority of existing outlier detection techniques have been mainly designed for static datasets and require a global view and multiple scans of data which is not feasible in case of str...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Incremental Principal Component Analysis Based Outlier Detection Methods for Spatiotemporal Data Streams

In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Realtime detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal ...

متن کامل

Efficient Algorithms for Mining Data Streams

Data streams are ordered sets of values that are fast, continuous, mutable, and potentially unbounded. Examples of data streams include the pervasive time series which span domains such as finance, medicine, and transportation. Mining data streams require approaches that are efficient, adaptive, and scalable. For several stream mining tasks, knowledge of the data’s probability density function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007